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* Open Course
- “Probabilistic Graphical Models”

by Eric Xing
* Book
- "Probabilistic Graphical Models”, Ch. 1-4
by Koller and Friedman
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Part One
What Is Graph Model
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How to do data mining @ ——
&7

» We get data, then we do mining

» Data Representation = Feature Vector

To describe things
from different

ot AN VA G T Ay N =L AT

» Data Relationship (Similarity)
- Data Matrix
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How you do data mining V6

» We apply some kind of algorithm(model) on data matrix,
which in some case, can be regarded as a data graph.
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» The question is that “Graph-based mining algorithms

are the graph model ?”.
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Graph Model

®

» GM refers to a family of distributions on a set of random
variables that are compatible with all the probabilistic
independence propositions encoded by a graph that connects
these variables.

» GM = Multivariate statistics + Structure

» GM is a language that used for writing down a fancy model.

--- Eric Xinﬁ
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Graph Model @ BRI
&7/

« Reveal the relationships among
random variables Compact Skeleton

Elimination Ordering

Probability @ BV

« Reveal the multivariate joint
distribution among random variables
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Compact Skeleton @ ——
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»1f I have n =8 discrete random variables(0/1), how
can I write down the full probability distribution?




Compact Skeleton @ ——
\ 4

Data Mining Lab

»If I have n = 8 discrete random variables(0/1), how
can I write down the full probability distribution?

P(AtoH) = P(A)P(B|A)P(C|AB)P(D|ABC)P(E|ABCD)
P(F|ABCDE)P(G|ABCDEF)P(H|ABCDEFG)

More natural ! 28 — 1
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»If I have n = oo discrete random variables(0/1), how can I
write down the full probability distribution now?

» Count all configurations? = Big Table
* Lose the insight of the graph
* Calculation

More natural but not compact!
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»More intuitively in a factorized way, we have

20

P(AtoH) = P(A)P(B)P(C|A)P(D|B)P(E|B)
P(F|CD)P(G|F)P(H|EF)

Compromise..
*  What we gain: Calculation or Cost saving
*  What we loss: Variables relation may not be independent



More Information on GM @W%@%g
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> TWO types Of GM Data Mining Lab

— Bayesian Network (Directed)
— Markov Random Field (Undirected)

> What can GM do

* Representation

Capture uncertainties
* Inference

Probability of A under the observation of B
* Learning

Find “right” model for my data
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> What can GM do Data Mining Lab

* Representation
Capture uncertainties

* Inference
Message-passing (sum-product, belief propagation)
The junction tree algorithms

MCMC
Variational algorithms

* Learning
Chow-Liu Algorithm



More Applications on GM @%&m@

> If you Stlll remember. N \ ’ Data Mining Lab

* LDA (Topic Model) --- NLP

* Hidden Markov Model by Ming?
* Bayes Network

* Dirichlet Process by Yu Bo*

* Gaussian Process by Pro. Xu

— :
30)) eAppnpepis
fommt= + + 4+t

00000 [ =
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Speech recognition Computer vision
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Part Two
Probability Representation

*Warning: The following contains a lot of terms and concepts
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Directed Acyclic Graph (DAG) @ I
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» Represents a probability distribution through a DAG that
encode conditional dependency and independency
relationships among variables in the model




Factorization Theorem of DAG @;ﬁgﬁ;@g‘ggﬁg
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. . . Data Mining Lab
» Factors according to “node given its parents

» Use the independencies from graph G to represent the
probability distribution P

P(X) = 1—[ P(X;|Parents(X;))

i=1:d

__E | Why this work?

P(AtoH) = P(A)P(B)P(C|A)P(D|B)P(E|B)
P(F|CD)P(G|F)P(H|EF)
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» The link between P and G on independence assertions

» Definition:

« [(P)=all independence assertions in form of (X_LY|Z) on P
* I(G) = all independence assertions on G
« IfI(G) € I(P), then G is the I-Map of P

> It I(G1) = I(G2), then graph G1 and G2 are [-equivalent
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»Some independency in P may not be in the I-Map

X Y |PX)Y)
z" -y(’ 0.08
20 yl | 0.32
o ztoy% | 0.12
2t oyl 0.48
X Y | PX)Y)
[(G)=X 1Y} IG=0  1G)=0 U 04
0 ot 0.3
T 022
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I-Map & Factorization @ —
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» G is the I-Map of P, P can be factorized according to G
» P can be factorized according to G, G is the I-Map of P

Target: P(H|EF) = P(H|ABCDEFG)

P(H|ABCDEFG) = P(AtoH) _ P(AtoH)
P(AtoG) Y, P(AtoH)
~ P(A)P(B)P(C|A)P(DIB)P(E|B) P(FICD)P(G|F)P(H|EF)
~ Y. P(A)P(B)P(CIAP(DIB)P(E|B) P(FICD)P(G|F)P(H|EF)
P(A)P(B)P(C|A)P(D|B)P(E|B) P(F|CD)P(G|F)P(H|EF)
- P(A)P(B)P(C|A)P(D|B)P(E|B) P(F|CD)P(G|F) }.,; P(H|EF)

= P(H|EF)
NS
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___________ . 1

"~ I(G) don’t have to imply every independence in I(P)

__Is there any independency in I(G) that are not in I(P)?

|

What is in I(G)
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What is in I(G)? @ HIRIRIE
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» Local Markov independence

* Given the parents of X;j, Xj is independent with the non-
descendants of X;

X; L NonDescendants(X;)|Parents(X;)

»*Global Markov Independence
* D-separation

 Itreveals a concept of Separation among the random variables
in graph from a global view
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Local Structures on Graph @ —

« Cascade (AL CIB)
 Common Parent (A L CIB)
‘&
<>

e V-Structure

If C has two causes A & B observation

of one of them would “explain away” CEDRCED

the other(less likely to be observed) <>




Active Tralils o\ T
\ ’ Data Mining Lab

» Causal Trail

« XD>Z>Y

> Evidential Trail e tral 15 aC’flVe 1
and only if Z is not

« X&ZCY

observed

» Common Cause
e X&Z2Y

The trail is active if and

»Common Effect __,  only if Z is observed or one

e« X2Z €Y of Z’s descendants is
observed
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»Let X, Y, Z be three sets of nodes in G, we say that X and Y
are d-separated given Z, denoted d-sep(X;Y |Z), if there is
no active trail between any node x€X and yE€Y given Z

» Define I(G) to be all the independence properties that
corresponds to D-separation

[(G) ={X LY|Z:d —sep(X;Y|Z)}



*What D-separation do? @ I
> Soundness(R] FE14) \ J Data Mining Lab

* Given Z, if x and y are d-separated, (x Ly)lz
* P implies any independences in D-separation (prootf passed)

> Completeness(58 1)
* D-separation contains all independence assertions

« If Xand Y given Z are not D-separated in G, then X and Y are

dependent in some( not all ) distribution P that factorizes over
G

Thus, Factorization works
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DAG Summa 'y @ T e
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» Three equivalences
* P factorizes over G

‘ I-map
P satisfies the local independence of G

P satisfies the global independence(D-separation) of G
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»Example

* Suppose we have a model

 where (A LC) | {B,D}and (B L D) | {A,C}

* Can you write down a DAG to represent it for me?

For some distribution, we can not use DAG to represent!
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Markov Random Field (UGM) @W%@%g
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»Perceptual knowledge

* An undirected graphical model that explicitly expresses the
relationships between nodes in a undirected way.

* Thus independence definition of UGM is ditferent from DAG

MRF
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Markov Property on UGM @mﬁmm
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» Local Markov Independence
* The Local Markov independencies associated with H is

[[(H):{X; LV —{X;} — MarkovBlanket(X;)}

» Markov Blanket
« UGM-={all neighbors of X}
* *DAG={Parents(X), Children(X),Parents(Children(X))}

(A) (A
@) (8 OO
CTR.e

MB(D) — {A, C}UGM
MRE — {A; C, B}DAG BN1




Markov Property on UGM @ —
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* B separate A and C if every path from A to C pass B, namely

Sep(A4; C|B)

* For any set A, B and C, such that B separates A and C, A is
independent of C given B:

I(H) = {A L C|B:Sep(A; C|B)}
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Markov Random Field (UGM) @W%@%g
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»DAG is used for causality

» UGM blurs the causality and is used for characterizing
mutual relationships

»How to convert DAG to UGM ?
- Moralization < Graph Elimination, Junction Tree Inference
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Markov Random Field (UGM) @ﬁmﬁ%g

How to write the joint probability of the random
variables in UGM?

»P(A,B,C,D) =7
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Undirected Graph Model @ ——
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» Definition

* An UGM represents a distribution P defined by an undirected
graph H and a set of positive-valued potential function ¥
associated with the clique of H, s.t

1
P(Xy, o Xn) = 5| |9cX0

Z = Z H‘/’c(xc)

Too many “New words”
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» Definition

* Asetof nodes is a clique, if any nodes in that set are
connected with an edge

»Max Clique

* Clique is a max clique, if we cannot add another node to make
it a bigger clique

Max clique= ABC, BCD
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> Info

Positive-valued function (Why?)

Represents the coupling strength of the clique, which
indicates how much the nodes within that clique covary

In most cases, the Exponential Function

¢c = exp(—1(c))

Where f(c) is called Energy Function with a higher energy
configuration having lower probability
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*Wh_y It work? @ O e

» Gibbs Distribution

Q{X} = I_IVA(X)
A
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*Wh_y It work? @ e

» The Hammersley-Clifford theorem proves that a MRF and
Gibbs Field are equivalent with regard to the same graph

* Given any MREF, all joint probability distributions that satisfy
the conditional independencies can be written as clique

potentials over the maximal cliques of the corresponding
Gibbs Field

* Given any Gibbs Field, all of its joint probability distributions
satisfy the conditional independence relationships specified
by the corresponding MRF
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Calculation Of Clique @ ——
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»Given a UGM, How to choose the size of clique to
calculate our factorization?
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Calculation Of Clique @ ——
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» Using max-clique

, 1
A,B,D @ P'(X1,X5,%3,X4) = El//t’(x124)xw(‘(x234)

Z - > .
[//(,(X124) Wt'(x234) xl.x;ic (X124)ch (X234)

» Using sub-clique

1

5%2(312 Wia (X14 W23 (X203 )W 24 (X24 )W 34(X34)

» Canonical Representation(Using all terms) o

1
—W (X1p4) %W (X334)

VA
XW1a (X1 W14 (X1 W 23 (X3 )W 24 (X4 )W 34 (X34)

XY (X)W, (X)W 5 (X3)W4(x4) o
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Why Concern? @ —

» Using max-clique

* Loss more local structure information

* The space of values of max-clique is larger
* Represent graph with less terms

» Using sub-clique

 Partition functions are much easier to compute

» Using all terms

These three clique configurations are equivalent?
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Interpretation of Clique Potentials@ ———
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» Independence statement implies (by definition) that the
joint below must factorize as

(O—0—2)

P(X,Y,Z) = P(Y)P(X|Y)P(Z|Y)
= P(X,Y)P(Z|Y)
= P(X|Y)P(Z,Y)
= @(x,y)p(,z)

» Potential function on some clique can’t all be marginal or
conditionals
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Part Three
Example Models Quick View
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Boltzmann Machine @ O

» A fully connected graph with pairwise potentials on
binary-valued nodes, the energy function is expressed in
sub-clique form

exp(Y.: i o (X; X;
P(X1:X2;X3,X4) = p( l’]Z(p( L ]))

_exp(2y; 05 XX + Xy aiXi + C)
- Z

Figure 4: An example Boltzmann machine.
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Restricted Boltzmann Machine @%mgm
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» Consists of many layers, each layers has two sub-layers:
one for hidden units h; and one for visible units x;, the
probability function for RBM is:

P(X,H|0) x exp(Z 0;0(x;) + Z 0;p(h;) + Z 0:j9(xi, hj) + A(6))
i i L,j

hidden units

visible units
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»2D-Ising Model won 1968 Nobel Prize in Chemistry

QOO0

O o O o O P(X)zexp(Zi,]'Z‘P(xixj))

O—0O0O0O0O zeXp(ZijQijxixj+Ziatxi)
Z

OO0 00

00000




Conditional Random Field @wﬁmgm
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» A discriminate UGM models the conditional probability
of a label sequence y (hidden) given an observation
sequence X.

P(Y|X) eXP(z Ak b (Vic, i, x, 1) + Z u; s;(yi, x,1))
Lk [l

Transition feature ‘ \ LState feature

function on edge function on
node




Take Home Message @ o
» GM = Multivariate statistics + Structure \ / Data Mining Lab

» Graph structure helps to represent a probability
distribution in a compact factorized way

»-map, D-separation

» Clique, Potential Function

» Local Markov & Global Markov

« > Equivalence (positive distribution P on UGM)
» Factorization

* Node given its parents

* Clique

»Fancy Models
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