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• Open Course

 “Probabilistic Graphical Models” 

by Eric Xing

• Book• Book

 "Probabilistic Graphical Models“, Ch. 1-4

by Koller and Friedman
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What Is Graph Model
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 We get data, then we do mining 

 Data Representation  Feature Vector
To describe things 

from different 
angles

Data Relationship (Similarity)

 Data Matrix

海绵宝宝的形状的傅立叶变换就是派大星的形状
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 We apply some kind of algorithm(model) on data matrix, 
which in some case, can be regarded as a data graph.

 The question is that “Graph-based mining algorithms 
are the graph model ?”.
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GM refers to a family of distributions on a set of random 
variables that are compatible with all the probabilistic 
independence propositions encoded by a graph that connects 
these variables.

GM = Multivariate statistics + Structure

GM is a language that used for writing down a fancy model.

--- Eric Xing
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Graph

• Reveal the relationships among 
random variables Compact Skeleton

Elimination Ordering

Probability

• Reveal the multivariate joint 
distribution among random variables

Elimination Ordering
…..
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If I have n = 8 discrete random variables(0/1), how 
can I write down the full probability distribution?
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If I have n = 8 discrete random variables(0/1), how 
can I write down the full probability distribution?

More natural ! 
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If I have n = ∞ discrete random variables(0/1), how can I 
write down the full probability distribution now?

 Count all configurations?  Big Table
• Lose the insight of the graph
• Calculation

More natural but not compact !
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More intuitively in a factorized way, we have

Compromise..
• What we gain: Calculation or Cost saving
• What we loss: Variables relation may not be independent
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 What can GM do

• Representation

Capture uncertainties

 Two types of GM

– Bayesian Network (Directed)

– Markov Random Field (Undirected)

Capture uncertainties

• Inference

Probability of A under the observation of B 

• Learning

Find “right” model for my data
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 What can GM do

• Representation

Capture uncertainties

• Inference

Message-passing (sum-product, belief propagation)

The junction tree algorithms

MCMCMCMC

Variational algorithms

….

• Learning

Chow-Liu Algorithm

…



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室More Applications on GM

Speech recognition Computer vision
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Part TwoPart Two

Probability Representation
*Warning: The following contains a lot of terms and concepts



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室Directed Acyclic Graph (DAG)

Represents a probability distribution through a DAG that 
encode conditional dependency and independency 
relationships among variables in the model
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Factors according to “node given its parents”. 

Use the independencies from graph G to represent the 
probability distribution P

Why this work?
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If I(G1) = I(G2), then graph G1 and G2 are I-equivalent
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Some independency in P may not be in the I-Map

X X XX

Y

X

Y

X

Y

I(G) = {X ⊥Y} I(G) = ∅ I(G) = ∅
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G is the I-Map of P, P can be factorized according to G

P can be factorized according to G, G is the I-Map of P
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I(G) don’t have to imply every independence in I(P) 

Why factorization work

G is the I-Map of H

I-Map == Factorization

I(G) don’t have to imply every independence in I(P) 

Is there any independency in I(G) that are not in I(P)?

What is in I(G)
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*Global Markov Independence

• D-separation

• It reveals a concept of Separation among the random variables 
in graph from a global view
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• Cascade (A⊥C|B)

• Common Parent (A⊥C|B)

• V-Structure

If C has two causes A & B observation 

of one of them would “explain away” 

the other(less likely to be observed)
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Causal Trail

• X  Z  Y

Evidential Trail

• X  Z  Y

Common Cause

The trail is active if 
and only if Z is not 
observed

Common Cause

• X  Z Y

Common Effect

• X  Z  Y

The trail is active if and 
only if Z is observed or one 
of Z’s descendants is 
observed
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Let X, Y, Z be three sets of nodes in G, we say that X and Y 
are d-separated given Z, denoted d-sep(X;Y|Z), if there is 
no active trail between any node x∈X and y∈Y given Z

Define I(G) to be all the independence properties that 
corresponds to D-separationcorresponds to D-separation
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Soundness(可靠性)

• Given Z, if x and y are d-separated, (x ⊥y )|z

• P implies any independences in D-separation (proof passed)

Completeness(完备性)

• D-separation contains all independence assertions

• If X and Y given Z are not D-separated in G, then X and Y are • If X and Y given Z are not D-separated in G, then X and Y are 
dependent in some( not all ) distribution P that factorizes over 
G

Thus, Factorization works
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Three equivalences

• P factorizes over G

• P satisfies the local independence of G

• P satisfies the global independence(D-separation) of G

I-map

• P satisfies the global independence(D-separation) of G
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Example

• Suppose we have a model 

• where (A ⊥C) | {B,D} and (B ⊥ D) | {A,C}

• Can you write down a DAG to represent it for me?

For some distribution, we can not use DAG to represent!
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Perceptual knowledge

• An undirected graphical model that explicitly expresses the 
relationships between nodes in a undirected way.

• Thus independence definition of UGM is different from DAG
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Local Markov Independence

• The Local Markov independencies associated with H is
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Global Markov Independence

• B separate A and C if every path from A to C pass B, namely

• For any set A, B and C, such that B separates A and C, A is 
independent of C given B:
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DAG is used for causality

UGM blurs the causality and is used for characterizing 
mutual relationships

How to convert DAG to UGM ? 

 Moralization  Graph Elimination, Junction Tree Inference



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室

How to write the joint probability of the random 
variables in UGM?

Markov Random Field (UGM)
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Too many “New words”
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Definition

• A set of nodes is a clique, if any nodes in that set are 
connected with an edge

Max Clique

• Clique is a max clique, if we cannot add another node to make 
it a bigger cliqueit a bigger clique

A

DC

B
Max clique= ABC, BCD
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Info

• Positive-valued function (Why?)

• Represents the coupling strength of the clique, which 
indicates how much the nodes within that clique covary

• In most cases, the Exponential Function

• Where f(c) is called Energy Function with a higher energy 
configuration having lower probability
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The Hammersley-Clifford theorem proves that a MRF and 
Gibbs Field are equivalent with regard to the same graph

• Given any MRF, all joint probability distributions that satisfy 
the conditional independencies can be written as clique 
potentials over the maximal cliques of the corresponding 
Gibbs FieldGibbs Field

• Given any Gibbs Field, all of its joint probability distributions 
satisfy the conditional independence relationships specified 
by the corresponding MRF
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Given a UGM, How to choose the size of clique to 
calculate our factorization?
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Using max-clique

Using sub-clique

Canonical Representation(Using all terms)
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Using max-clique

• Loss more local structure information

• The space of values of max-clique is larger

• Represent graph with less terms

Using sub-clique

• Partition functions are much easier to compute• Partition functions are much easier to compute

Using all terms

• …

These three clique configurations are equivalent?
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Independence statement implies (by definition) that the 
joint below must factorize as

Potential function on some clique can’t all be marginal or 
conditionals
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Part ThreePart Three

Example Models Quick View
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A fully connected graph with pairwise potentials on 
binary-valued nodes, the energy function is expressed in 
sub-clique form
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2D-Ising Model won 1968 Nobel Prize in Chemistry
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A discriminate UGM models the conditional probability 
of a label sequence y (hidden) given an observation 
sequence x. 

Transition feature 
function on edge

State feature 
function on 
node
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GM = Multivariate statistics + Structure

Graph structure helps to represent a probability 
distribution in a compact factorized way

I-map, D-separation

Clique, Potential Function

Local Markov & Global Markov 

Equivalence (positive distribution P on UGM)•  Equivalence (positive distribution P on UGM)

Factorization

• Node given its parents

• Clique

Fancy Models
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